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Introduction

Recently, power consumption has emerged as a major concern in embedded
systems.

<= It has a direct impact on packaging, cooling costs, reliability, lifetime.
m Digital CMOS circuits have two main types of power dissipation.

<= Dynamic
*  When the circuit performs the function which it was designed for.

M
2
denm'mif: == Z Ck - fk ) VDD
k=1

<= Static
*  Preserve the logic state between such switching activity.
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Introduction cont.

The power problem must be addressed at all levels of the design hierarchy from
system to circuit.

B In this paper, providing on system and architecture level design techniques to
reduce both static and dynamic power dissipation.

<= At this high-level abstraction, the specifics of each particular embedded applications
can be considered as a whole.
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Energy and Power Modeling

B Modeling and power estimation assist system and architecture-level design.
<= Early design phase, high degree of accuracy on power estimation is not available.

<= Highly accurate estimation would be too time consuming to need a reasonable degree
of design.

B Power estimation during early design stage should aim to ensure a high degree
of fidelity rather than accuracy.

<= Evaluate the relative power efficiency of different candidate system architectures,
alternative SW implementations and different power management techniques

B There are four models in this paper.
<= Instruction- and Function-Level Models

Micro-Architecture Models

Memory and Bus Models

Battery Models

+ + +

E N c HANYANG University 5
College of Info and Comm

Embedded and Network Computing Lab.



Instruction- and Function-Level Models

B Instruction-level power model

< Estimate the relative power efficiency of different processors
e Same application, possibly alternative memory configurations

<= Also evaluate the relative power efficiency of SW implementations
e Same application, in the context of a specific embedded platform

<= Itis assigns a power cost to each assembly instruction and estimates the overall
energy consumed by summing up the instruction costs for a dynamic execution trace

<= But, this model can still be prohibitively time consuming during early design space
¢  Collecting and analyzing large instruction traces for many processors

B Function-level power model
<4 In order to accelerate estimation

<= It relies on the use of macromodels characterizing the average energy consumption of
a library of subroutines executing on a target processor.

<+ E.g.) Insertion sort = an? + bn + ¢

*  Actual power dissipation then needs to be measured for a large number of experiments, run
with different values of n. ( n denotes the number of elements )
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Instruction- and Function-Level Models cont.

These models allow designers to quickly evaluate a large number candidate
system architectures and alternative software implementation.

m This initial broad exploration is concluded, power models for each of the
architecture’s main subsystems and components are needed.

<= In order to support the detailed architectural design phase that follows.
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Micro-architectural Models

B This models are critical to evaluating the impact of different processing sub-
system choices on power consumption.

< As well as the effectiveness of different power management techniques
< E.g.) Simplepower based on Simplescalar

B Simulation-based power estimation techniques use very simple empirical power
models for data path and control logic, and slightly more sophisticated models
for regular structures such as caches.

< E.g.) Equivalent capacitance

B A substantial percentage of the overall power budget of a processor is actually
spent on the global clock.

<= Power dissipation on global clock distribution is impacted by # of pipeline registers
and by global and local wiring capacitances.

<= Critical issue during processor core selection and configuration
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ARMulator power-extended version
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Memory and Bus Models

B Storage elements constitute a substantial part of the power budget of
embedded systems.

m CACTI
<= Cache Access and Cycle Time

<= Given a specific cache configuration and target requirements, It generates a structural
design for such cache configuration.

B Buses are also a significant contributor to dynamic power dissipation.
+ Cx V% xfa

<= The average switching frequency of the bus ( fa ) is defined by the product of two
terms.

*  The average number of bus transitions per word x bus frequency
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Battery Models

The capacity of a battery is a nonlinear function of the current drawn from it.

<= E.g.) Increases current drawn from a battery by a factor of two, deliverable battery
capacity and its lifetime is decreased by more than half.

B This is a trade-off between quality/performance and duration of service in a
nonlinearity manner. ( rate-capacity effect )

® In order to properly evaluate the effectiveness of techniques during system
level design, adequate battery models and metrics are needed.
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Battery Models cont

B Battery-discharge delay product

<= A new metric to emphasize the importance of accurately exploring key trade-offs
between battery lifetime and system performance.

<= Rate-capacity effect is sensitive factor in this metric.
<= Detailed/precise battery model is required.

*  Predict the remaining capacity of a rechargeable lithium-ion battery in terms of several
factors.

¢  Discharge-rate, battery output voltage, battery temperature, cycle age
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System/Application Level Optimizations

B To provide the system with the desired functionality while meeting cost, battery

lifetime, and other requirements, it may be useful to explore trade-offs between
power/energy and QoS.

<= Optimizations is needed under the control of a system level power manager.

<= E.g.) If the battery level drops below a certain threshold, the power manager may
drop some services and/or swap some tasks to less power hungry version.

<= Sometimes, power manager may also shutdown or slowdown subsystems.
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Voltage and Freguency Scaling

m Digital CMOS circuits have both dynamic and static power consumption.

<= Every transition of a digital circuit consumes power, because every charge or
discharge of the digital circuit’'s capacitance drains power.

A M : # of gates
o 2 C, : load capacitance of gate g,
Piyﬁf-'»mif-' = E Ck - fi - VDD f, : switching frequency of g,
k=1 Vpp - supply voltage

<= Reduction of VDD is the most effective solution. However, Lowering VDD creates the
problem of increased circuit delay.

VD 1) T : propagation delay
T V¢ : input gate voltage
(Vf}“ - VT)E V; : threshold voltage
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Voltage and Frequency Scaling cont.

Deadline Deadline
Power Power '
Idle time i
—
High voltage, High frequency ! Time Low voltage, Low frequency  } Time

B This techniques must necessarily rely on adequate dynamic workload prediction
and performance metrics.

<= More complex
<= But, needed RT systems
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Dynamic Resource Scaling

Dynamic resource scaling refers to exploiting adaptive, fine-grained HW
resource reconfiguration in order to improve power efficiency.

m Clock gating or V gating

<= Enhance the micro-architecture with the ability to selectively disable components, fully
or partially.

® Thus, by dynamically scaling down micro-architecture components during low
activity periods, substantial power savings can potentially be achieved.
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Energy Efficient Memory Subsystems

“Processor-memory performance gap” causes the memory access latency
problem.

B As a consequence, power dissipation in the memory contributes to a substantial
fraction of the total energy consumption.

< E.g.) StrongARM SA-110 revealed that more than 40% of the processor’s power
budget. ( on-chip cache )

Power-aware memory designs have received
considerable attention in recent years.
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Cache Hierarchy Tuning

B The energy cost of accessing data/instructions from off-chip memories can be
as much as two orders of magnitude higher than that of an access to on-chip
memory.

® In the context of embedded systems, it is possible to matches the bandwidth
requirements and access patterns of the target embedded application by
carefully tuning the configuration of the cache hierarchy.
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Novel Cache Partitioning Schemes

Energy efficiency is improved in these designs by taking direct advantage of
specific characteristics of target classes of applications.

Vertical partition schemes

< E.g.) Filter cache

*  Very small cache placed in front of the L1 data cache.

*  For applications with small working sets, this strategy can lead to considerable power savings.
<= E.g.) Pre-decoded instruction buffers and loop buffers

¢ Applied to instruction caches

e Store recently used instructions on an instruction buffer, in a decoded form to reduce the
fetch and decode. ( pre-decoded instruction buffers )

¢ Hold time-critical loop bodies

Horizontal partition schemes
<= Place the additional buffers at the same level as the L1 cache

<= E.g.) Region-based caches
*  Add two small 2KB L1 D-caches, one for stack and one for global data
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Other Ideas

B Dynamic Scaling of Memory Elements
<= Reduce a leakage power
< E.g.) Cache Decay
*  Turned off cache lines after a fixed number of cycles ( decay interval )
B Special purpose memory subsystems for specific application
m Code Compression

B Interconnect Optimizations
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