

Application Note Labtool User Guide for 88W8897

Documentation No. AN12101 Marvell Semiconductor Inc.

Marvell[®] Semiconductor Corporation 5488 Marvell Lane Santa Clara, CA 95054

Copyright © 2011 Marvell[®] Semiconductor Corporation. All rights reserved.

Revision History

Date	Author	Revision	Description
09/11/13	Stephen Sobejana	0.1	Initial Draft
11/08/13	Stephen Sobejana	0.3	Included CMD35 Usage
		6	8-
			5
		55	

AND THE AND TH

The Marvell 8897 Labtool User Guide

The following application note gives a brief overview of the Marvell Labtool for the 88W8897 SOC. The tool allows a user to do certain low-level functional tests on the device to determine radio performance, perform certain tests that may be required for Homologation /Certification, and optimize other functions.

The tools are available for download from the Extranet. Since there are multiple versions, it is important to determine which release should be used.

I. Marvell Labtool Usage

WLAN

MARVELL CONFIDENTIAL - UNAUTHORIZED DISTRIBUTION OR USE STRICTLY PROHIBITED

\leftilde{\beta}	
C:\8897\MFG-W8897-MF-WIFI-BT-FM-BRG-FC8-WIN-X86-2.0.0.14-14.1.11.p197-bin\bin	vr 🗆 🗙
W87xx <802.11a/g/b/n> TEST MENU	
9 : Get Tx Rx Path configuration	
10 . Set IX AX Fach configuration	
13 : Get RF DataRate	
14 : Set RF DataRate 15 : Get TRPC Info	
16 : Set TRPC Info 17 : Set Continuous Tx Mode	
18 : Set CW Tx Mode	
22 : Set Power at Hintenna Using Cal data 25 : Set DutyCycle Tx Mode	
29 : Get RF Band 30 : Set RF Band	
31 : Clear received packet Count	
32 : Get received packet Count 33 : Tx MultiCast Packet	
35 : Adjust Packet Gap with Sifs 36 : Send Beam-Forming Test signal(NDPA/NDP nacket)	
37 : Get Rxed Beam-Forming Data (EraseAfter=0)	
40 : Check SPI header content	
41 : Dump EEPROM/OTP/FLASH content 45 : Read MAC Address From EEPROM/Flash	
46 : Write MACAddress in EEPROM/Flash	
51 : Erase flash (only for flash device) 53 : Set Cal from file	
54 : Get Cal From EEPROM into files 60 : Read MAC Reg	
61 : Write MAC Reg 62 : Read BBU Reg	
63 : Write BBU Reg	
65 : Write RF Reg	
66 : Read CAU Reg 67 : White CAU Reg	
68 : Peek SOC Mem	
70 : Peek Spi	
71 : Poke Spi 88 : FW/HW Version	
89 : Load Dut configuration file	
96 : Set Rf XIAL control	
99 : Exit 101 : Get rf control mode	
102 : Set rf control mode	
112 : Set Channel BW	
122 : Set FEM 144 : Read OTP Raw Data	
145 : Dump DUT memory cal data content	
or increase calibration count for this unit then return NumCalOTH	
147 : Get free lines in OTP 155 : Read MAC Address From Fw/registers	
156 : Write MACAddress in Fw/registers	-

Listed below are the WLAN commands shown in the CLI menu. Commands in **BOLD** are fully supported and those without are pending support. SD8897 (802.11a/c/g/b/n) TEST MENU .

For any command, enter with "?" to bring up help menu to list out the supported options.

9. Get Tx Rx Path Configuration

Get Tx Rx Path configuration

Tx/Rx path: Hot bit definition. bit=0, path disabled, bit=1, path enabled. bit0=PathA, bit1=PathB

10. Get Tx Rx Path Configuration

Tx/Rx path: Hot bit definition. bit=0, path disabled, bit=1, path enabled. bit0=PathA, bit1=PathB.

Ex. "10 3 3"

The first "3" is to enable both Path A and B for TX.

The second "3" is to enable both Path A and B for RX.

11. Get RF Channel

Ex. "11"

"11" returns the channel in use.

Channel [offset 1-lower boundary, 3-upper boundary

(valid for none 20Mhz bandwidth only)

(2.4GHz Channels:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14(JP)) (5GHz Channels: 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 149, 153, 157, 161, 165, 8(JP 20MHz), 12(JP 20MHz), 16(JP 20MHz), 34(JP 20MHz), 38(JP 20MHz), 42(JP 20MHz), 46(JP 20MHz), 184(JP 20MHz), 188(JP 20MHz), 192(JP 20MHz), 196(JP 20MHz))

12. Set RF Channel (decimal)

To place the device on a specific channel, perform the listed command below in Labtool.

Ex. "12 7"

The "7" specifies the desired channel for testing.

13. Get RF Data Rate

(1 for 1M; 2 for 2M; 3 for 5.5M; 4 for 11M; 5 for 22M; 6 for 6M; 7 for 9M; 8 for 12M; 9 for 18M; 10 for 24M; 11 for 36M; 12 for 48M; 13 for 54M; 14 for 72M; 15 for MCS0; 16 for MCS1; 17 for MCS2; 18 for MCS3; 19 for MCS4; 20 for MCS5; 21 for MCS6; 22 for MCS7; 23 for MCS8;

http://www.marvell.com

24 for MCS9; 25 for MCS10; 26 for MCS11; 27 for MCS12; 28 for MCS13; 29 for MCS14; 30 for MCS15; 101 for VHT_SS1_MCS0; 102 for VHT_SS1_MCS1; 103 for VHT_SS1_MCS2; 104 for VHT_SS1_MCS3; 105 for VHT_SS1_MCS4; 106 for VHT_SS1_MCS5; 107 for VHT_SS1_MCS6; 108 for VHT_SS1_MCS7; 109 for VHT_SS1_MCS8; 110 for VHT_SS1_MCS9; 111 for VHT_SS2_MCS0; 112 for VHT_SS2_MCS1; 113 for VHT_SS2_MCS2; 114 for VHT_SS2_MCS3; 115 for VHT_SS2_MCS4; 116 for VHT_SS2_MCS5; 117 for VHT_SS2_MCS6; 118 for VHT_SS2_MCS7; 119 for VHT_SS2_MCS8; 120 for VHT_SS2_MCS9)

14. Set RF Data Rate

Ex. "**14 1**" //1 for 1M (See CMD13 Information for various Data Rates)

15. Get TRPC Info

MARVELL CONFIDENTIAL - UNAUTHORIZED DISTRIBUTION OR USE STRICTLY PROHIBITED

Path – 0 for A, 1 for B

TRPCID – This ID is different for different data rates and bandwidths. The ID's are subject to change. Therefore, it is best to occasionally read it back from CMD 25. E.g. When setting CMD 25, it will tell the user what ID is being used for that data rate. For example, when issuing 25 1 22, it will say for that data rate (MCS7 20), it is on ID 0x5. For MCS7 40 MHz, the ID is 0xb.

PathID TRPC_ID(0x) PathID: 0 - path A, 1 - path B 2(default):display TRPC info for both Path TRPC_ID: 0 - 0x1f for TRPC ID 0 to 31, 0x20(default):display all TRPC ID info for the path

Ex. "15 1 5"

// Query TRPC Info on path B for TRPC ID 5. TRPC ID 5 corresponds to MCS7 20 MHz 15 corresponds

16. Set TRPC Info

16 <path> <TRPCID> <Gain Code>

PathID TRPC_ID(0x) InitP(0x) ThreshHi(0x) ThreshLow(0x) PA1(0x) PA2(0x) PA3(0x) Ex. "16 0 1 60"

http://www.marvell.com

88W8897 Labtool User Guide

Example Use Case of Command 15/16 Enter option: 1011 Dutlf_SetTxRxPath to 1 1 : status 0x0 Enter option: 30 0 Dutlf_SetModeAG: 0x0 Enter option: 112 0 Dutlf_SetChannelBw: 0x00000000 Enter option: 127 Dutlf_SetRfChannel: 0x0000000 RF Channel: 7 (2442.0 MHz) Enter option: 1502 Path Id: 0 TRPC InitP ThreshHi ThreshLow PA1 PA2 PA3 0x02 0x56 0x001 0x0fd 0x25 0xb3 0x6e Enter option: 16 0 2 4c Dutlf_SetTRPCInfo: 0x00000000 PathId=0 TRPC ID=0x2 InitP=0x4c ThreshHi=0x1 ThreshLow=0xfd PA1=0x25 PA2=0xb3 PA3=0x6e Enter option: 25 1 4 Dutlf_SetTxDutyCycle: 0x0000000 TRPC ID: 2

http://www.marvell.com

17. Set Continuous Tx Mode

Placing the device in continuous transmit mode can be performed with command "17" after the power is manually set.

Ex. "17 1 4"

The first parameter ("1") enables the command and the ("4") specifies the data rate, which in this case is 11M.

Ex. **"17 0"**

Using a **"0**" disables the command and should be performed before executing another command.

(enable) (datarate) (pattern) (CSMode) (ActSubCh) Enable: 0(default): off; 1: on DataRate: TxDataRate(default - 4), see cmd 14

Pattern: anyvalue between 0(default) - 0xfffffff

CSMode: 0(default) - disable, 1 - enable

ActSubCh: default -1, which will follow current BW setting.

0=Primary_20, 1=Primary_40, 2=Primary_80, 5=Dup_40, 6=Dup_80

if -1 and LG rate, ActSubCh=0/5/6 based on ChanBW=20/40/80

if -1 and HT/VHT rate, ActSubCh=0/1/2 based on ChanBW=20/40/80)

18. Set CW Tx Mode

(Enable) Enable: 0: off; 1: on Ex. "**18 1**"

19. Set Carrier Suppression Tx Mode(enable)

Ex. "**19 1**"

The first parameter ("1") enables the command.

22. Set Tx Output Power

Command 22 in the labtool can be used to specify output power as well as identifying whether 11B or 11G rate is being used for the test.

Ex. "22 1 6 13 1"

Set Power at Antenna Using Cal data

(TxPath) (channel) (power_level) ([modulation=0:0=b, 1=g]) TxPath: Tx Path, 0=PathA, 1=PathB channel to set to. See cmd11 for valid channels power_level: Tx Power level to be set to, in dBm modulation: CCK or OFDM modulation, only for 2.4GHz band.0=b(CCK),

1=g(OFDM)

http://www.marvell.com

Confidential

5w1zvm99-hp3hshwi * Marvell Semiconductor Inc * UNDER NDA# 12104823

Example: 22 1 6 13 1

This above command will set the output power to path B at "**13dBm**" on channel "**6**" and perform an 11G rate transmit.

Notes:

1 – If there is no valid calibration data in eeprom or OTP, the return for this command will be -1.

2- The Last parameter is used to specify 11B (with a "0") or 11G(with a "1").

25. Set DutyCycle Tx Mode

(enable=0(0|1)) (dataRate=4) [(payloadweight =50)(pattern=0)(shortPreamble=0(0|1))] (ShortGI=0(0|1)), (AdvCoding=0(0|1)) (TxBfOn=0(0|1)) (GFMode=0(0|1)) (STBC=0 (2bits)) (PowerID=-1) (SignalBw=-1 (-1=Follwing deviceBw as in cmd112/111; 0=20MHz; 1=40MHz; 4=80Mhz))

Placing the device in burst mode can be performed with command "25" after the power is manually set.

Ex. **"25 1 4**"

MARVELL CONFIDENTIAL - UNAUTHORIZED DISTRIBUTION OR USE STRICTLY PROHIBITED

The first parameter ("1") enables the command and the ("4") specifies the data rate, which in this case is 11M.

Ex. **"25 0"**

Using a *"0"* disables the command and should be performed before executing another command.

Complete Test Sequence w/ Labtool CMD25:

Tx on CH 6 at 10 dBm with a CCK-11Mbps data rate in 20 MHz BW mode on path A only 25 // Stop Tx

- 10 1 1 // Set Path A Only
- 30 0 // Set to 2.4 GHz Band
- 112 0 // Set to 20 MHz BW
- 12 6 // Set to CH 6
- 22 0 6 10 0 // Set to CH 6 at 10 dBm Output Power with CCK/BPSK Data Rate on Path A
- 25 1 4 // Tx at 11 Mbps
- 25 // Stop Tx

29. Get RF Band

Ex. "29" 0 for 2.4GHz, 1 for 5GHz

http://www.marvell.com

88W8897 Labtool User Guide

30. Set Band Ex. "30 1 " Sets the band to 5G. 31. Clear received packet Count (Start Rx FER test) Ex. "31 " Using a "31" enables the command and should clear the receive packet count. 32. Get received packet Count (Stop Rx FER test) Ex. "32 " Using a "32" enables the command and should get the receive packet count. 33. Tx MultiCast Packet (0x)(len=400) (0x)(Count=64) (rate=4) (pattern=0xAA) (shortPreamble=1) (bssid-xx.xx.xx.xx.xx.xx) Ex. "33 400 64 4" "33" enables the command and should get the receive packet count. "400" enables the command with len of 1024 "64" enables the command with packet count of 64 "4" enables the command with data rate of 11M 35. Adjust Packet Gap with SIFS Ex. "35 1 41 150 100 AA 1 3 0 0 0 0 0 0 -1 -1 11.22.33.44.55.66" "1" enables the command "4" sets the data rate to 11M "1" adjusts the Tx burst gap "150" adjusts the burst SIFs in us "100" adjusts the length "AA" adjusts the pattern "1" short Preamble enable "3" sets the Active sub Channels "0" disabled Short GI "0" Advanced Coding disabled "0" TX beamforming disabled "0" Green Field Mode disabled "0"STBC Disabled "0" DPD disabled "-1" PowerID "-1" SignalBW "11.22.33.44.55.66" to specify BSSID (enable=0(0|1)) (rate=4) (AdjustTxBurstGap=0(0|1)) (BurstSifsInUs=(0)(0-255)) (len=400(0x)) (pattern=AA) (shortPreamble=1) (ActSubCh=3(lower=0, upper=1, Both path 2 or 3) (ShortGI=0(0|1)) (AdvCoding=0(0|1)) (TxBfOn=0(0|1)) (GFMode=0(0|1)) (STBC=0 (2bits))

http://www.marvell.com

(DPD=0 (1 for Enable, 0 for Disable)) (PowerID=-1) (SignalBw=-1 (-1=Follwing deviceBw as in cmd112/111; 0=20MHz; 1=40MHz)) (bssid-xx.xx.xx.xx.xx)
36. Send Beam-Forming Test signal(NDPA/NDP packet) (Count=1) (csi_steering=0) (mcsfeedback=0)

(mode=0) (interval=0) (slp=1) Count:numberof packaet to tx. Default to 1

CSI steering: 0 csi steering no feedback

1: csi steering fb csi

- 2: csi steering fb no compress bf
- 3: csi steering fb compress bf

Mcsfeedback : 0 MCS feedback off, 1 MCS feedback on Mode: 0: NDPA

1: Control Wrapper Interval: in ~20msec slp: 1: ON 0: OFF Ex. "**36 1 3 0 0 1 0**"

37. Get Rxed Beam-Forming Data (EraseAfter=0)

Get Rxed Beam-Forming Data into a file. Erase After: 1=Erase SQ buffer after dumping. : 0= Don't Erase SQ buffer after dumping. Ex. **"37 1**"

45. Read MACAddress

Using a "45" returns the MAC address.

46. Write MACAddress (xx.xx.xx.xx.xx.xx)

Using a "46 00.50.43.20.ee.ff" enables the user to set the MAC address.

60. Read MAC Reg (0x)(addr)

CMD **"60"** enables the user to read back the specified MAC register. Ex.

"60 1b8" will read back MAC register 0x1b8

61. Write MAC Reg (0x 0x)(addr data)

CMD "61" enables the user to write to the specified MAC register.

Ex.

"61 1b8 11" will write 0x11 to MAC register 0x1b8

http://www.marvell.com

62. Read BBP Reg (0x)(addr)

CMD "62" enables the user to read back the specified BBP register.

Ex.

STRICTLY PROHIBITED

MARVELL CONFIDENTIAL - UNAUTHORIZED DISTRIBUTION OR USE

"62 1b8" will read back BBP register 0x1b8

63. Write BBP Reg (0x 0x)(addr data)

CMD **"63"** enables the user to write to the specified BBP register. Ex.

"63 1b8 0x11" will write 0x11 to BBP register 0x1b8

64. Read RF Reg (0x)(addr)

CMD **"64"** enables the user to read back the specified RF register. Ex.

"64 1b8" will read back BBP register 0x1b8

65. Write RF Reg (0x 0x)(addr data)

CMD **"65"** enables the user to write to the specified RF register. Ex.

"65 1b8 11" will write 0x11 to RF register 0x1b8

66. Read CAU Reg (0x)(addr)

CMD **"66**" enables the user to read back the specified CAU register. Ex.

"66 800001b8" will read back BBP register 0x1b8

67. Write CAU Reg (0x 0x)(addr data)

CMD **"67**" enables the user to write to the specified RF register. Ex.

"67 800001b8 1111" will write 0x1111to CAU register 0x80001b8

68. Peek SOC Mem (0x)(addr)

CMD **"68**" enables the user to read back the specified location in the SOC mem. Ex.

"68 800001b8" will read back SOC mem location 0x800001b8

69. Poke SOC Mem (0x 0x)(addr data)

CMD **"69"** enables the user to write to the specified SOC mem location. Ex.

"69 800001b8 1111" will write 0x1111 to SOC register 0x800001b8

88. Get FW and HW Versions

http://www.marvell.com

212. Set Channel by Freq (in MHz) 99. Exit Enter option: 88 LabTool Version: 1.0.5.8 DutIf_GetFWVersion: 0x00000000 FW Version: 14.0.1.41 Mfg Version: 1.0.5.9 DutIf_GetHWVersion: 0x00000000 SOC: 0220 11 BBP: 020 11 BBP: 98 00 RF: 00 00 RF: 00 00 RF OR Version: 1.4 Customer ID: 0 Press [Enter] key to continue ...

111. Get Channel BW (0: 20MHz, 1: 40MHz, 4: 10MHz, 5: 5MHz. 2 and 3 are invalid for this chip)

112. Set Channel BW

122. Set FEM

MARVELL CONFIDENTIAL - UNAUTHORIZED DISTRIBUTION OR USE STRICTLY PROHIBITED

FEM file is specified in "setup.ini" section[HW_CONFIG], field "FEM_FILENAME"

144. Read OTP Raw Data

145. Dump Memory Cal Data Content

CMD "**145**" enables the user to read specific locations in OTP. Ex.

"145 0" will read location 0x0 in OTP

146. Get the number of calibration DONE on OTP

or increase calibration count for this unit then return NumCalOTP

- Ex. 146 will return the number of calibration done.
 146 1 will increament the number by 1 147. Get free lines in OTP
- 147. Get free lines in OTP
- 155. Read MAC Address From Fw/registers
- 156. Write MACAddress in Fw/registers Write MACAddress in Fw/registers MACAddress (xx.xx.xx.xx.xx.xx)
- 157 Read BF CSI Peer MAC Address From registers
- 158. Write BF CSI Peer MAC Address into registers MACAddress (xx.xx.xx.xx.xx.xx)
- 159. Enter-Exit BF CSI Test Mode ((enter=1/exit=0)=0)

http://www.marvell.com

Ex. "159 0"

160. IBFCal debugFlag (0 - off, 1 - on)

99. Exit

MARVELL CONFIDENTIAL - UNAUTHORIZED DISTRIBUTION OR USE STRICTLY PROHIBITED

1. Tx on CH6	at 10dBm with a CCK-11Mbps data rate in 20 MHz BW mode on path A only
25	// Stop Tx
10 1 1	// Set Path A Only
30 0	// Set to 2.4 GHz Band
112 0	// Set to 20 MHz BW
22 0 6 10 0 25 1 4 25	<pre>// Set to CH 6 at 10 dBm Output Power with CCK/BPSK Data Rate on Path A // Tx at 11 Mbps // Stop Tx</pre>
2. Tx on CH6	at 10dBm with a CCK-11Mbps data rate in 20 MHz BW mode on path B only
25	// Stop Tx
10 2 2	// Set Path B Only
30 0	// Set to 2.4 GHz Band
112 0	// Set to 20 MHz BW
12 6	// Set to CH 6
22 1 6 10 0	// Set to CH 6 at 10 dBm Output Power with CCK/BPSK Data Rate on Path B
25 1 4	// Tx at 11 Mbps
25	// Stop Tx
3. Tx on CH3	6 at 8dBm with a MCS7 Data rate in 20 MHz BW Mode on Path A and B
25	// Stop Tx
10 3 3	// Set Path A and B
30 1	// Set to 5 GHz Band
112 0	// Set to 20 MHz BW
12 36	// Set to CH 36
22 2 36 8 1	// Set to CH 36 at 8 dBm Output Power with OFDM Data Rate on Path A + B
25 1 22	// Tx at MCS 7
25	// Stop Tx

4. Tx on CH 3640 (CH 36 + CH 40 Bonded Pair) at 12 dBm with a MCS7 Data rate in 40 MHz BW Mode on Path A and B

http://www.marvell.com

88W8897 Labtool User Guide

25	// Stop Tx
10 3 3	// Set Path A and B
30 1	// Set to 5 GHz Band 💫 💫 👝
112 1	// Set to 40 MHz BW
12 36	// Set to CH 36. CH 36 is the lower bonded pair. CH 40 is the higher
	//bonded pair. Set the lower channel in 40 MHz mode.
22 2 36 12 1	// Set to CH 36 + CH 40 Bonded Pair at 12 dBm Output Power with OFDM
	//Data Rate on path A + B
25 1 22	// Tx at MCS 7
25	// Stop Tx
5. Rx on CH	157 in 20 MHz BW Mode on both Path A and Path B
25	// Stop Tx S
10 3 3	// Set to Path A and B
30 1	// Set to 5 GHz Band
112 0	// Set to 20 MHz BW
12 157	// Set to CH 157
32	<pre>// Get Rx Packet Count and then clear the Rx packet counter</pre>
6. Cont. Tx o	on CH 36 at 8 dBm with a MCS7 Data rate in 20 MHz BW Mode on Path A and B
17	// Stop Cont. Tx
25	// Stop Tx
1033 🔬 🔬	// Set Path A and B
30 1 🛛 🏠	J/Set to 5 GHz Band
1120 🛛	// Set to 20 MHz BW
12 36	// Set to CH 36
22 2 36 8 1	// Set to CH 36 at 8 dBm Output Power with OFDM Data Rate on Path A + B
25 1 22	// Tx at MCS 7
25	// Stop Tx
17 1 22	// Cont. Tx at MCS7
17	// Stop Cont. Tx

11AC Manual Testing with Labtool Commands

7. Tx on CH 36/40/44/48 (CH 36 + CH 40 + CH 44 + CH48 Bonded Channels) at 8 dBm with a VHT SS1 MCS9 Data rate in 80 MHz BW Mode on Path A only

25	// Stop Tx

- 102 0 // Set RF Control Mode to 0x0
- 10 1 1 // Set Path A only
- 30 1 // Set to 5 GHz Band
- 112 4 // Set to 80 MHz BW
- 12 36 // Set to CH 36 (80 MHz Center Frequency is at 5210 MHz)

http://www.marvell.com

	6		-			
М	A	R	V	E	L	L®

25 // Stop Tx
 8. Tx on CH 149/153/157/161 (CH 149 + CH 153 + CH 157 + CH167 Bonded Channels) at 8 dBm with a VHT SS2 MCS9 Data rate in 80 MHz BW Mode on Path A and B 25 // Stop Tx 102 0 // Set RF Control Mode to 0x0 10 3 3 // Set Path A and B 30 1 // Set to 5 GHz Band 112 4 // Set to 80 MHz BW 12 149 // Set to CH 149 (80 MHz Center Frequency is at 5775 MHz) 22 2 149 8 1 // Set to CH 149 at 8 dBm Output Power with OFDM Data Rate on Path A + B 25 1 120 // Tx at VHT SS2 MCS9 25 // Stop Tx
9. Rx on CH 100/104/108/112 (CH 100 + CH 104 + CH 108 + CH 112) in 80 MHz BW Mode on both Path A and Path B 25 // Stop Tx 102 0 // Set RF Control Mode to 0x0 10 3 3 // Set to Path A and B 30 1 // Set to 5 GHz Band 112 4 // Set to 80 MHz BW 12 100 // Set to CH 100 (80 MHz Center Frequency is at 5530 MHz) 32 // Get Rx Packet Count and then clear the Rx packet counter
10. Cont. Tx on CH 116/120/124/128 (CH 116 + CH 120 + CH 124 + CH 128) at 8 dBm with a VHT SS2 MCS9 Data rate in 80 MHz BW Mode on Path A and B17// Stop Cont. Tx25// Stop Tx102 0// Set RF Control Mode to 0x010 3 3// Set Path A and B30 1// Set to 5 GHz Band112 4// Set to 80 MHz BW12 116// Set to CH 116 (80 MHz Center Frequency is at 5610 MHz)22 2 116 8 1// Set to CH 36 at 8 dBm Output Power with OFDM Data Rate on Path A + B25// Stop Tx17// Stop Tx17 1 120// Cont. Tx at VHT SS2 MCS917// Stop Cont. Tx

// VHT Data Rates 101 for VHT_SS1_MCS0

http://www.marvell.com

102 for VHT_SS1_MCS1 103 for VHT_SS1_MCS2 104 for VHT_SS1_MCS3 105 for VHT_SS1_MCS4 106 for VHT_SS1_MCS5 107 for VHT_SS1_MCS6 108 for VHT_SS1_MCS7 109 for VHT_SS1_MCS8 110 for VHT_SS1_MCS9 111 for VHT_SS2_MCS0 112 for VHT_SS2_MCS1 113 for VHT_SS2_MCS2 114 for VHT_SS2_MCS3 115 for VHT_SS2_MCS4 116 for VHT_SS2_MCS5 117 for VHT_SS2_MCS6 118 for VHT_SS2_MCS7 119 for VHT_SS2_MCS8

MARVELL CONFIDENTIAL - UNAUTHORIZED DISTRIBUTION OR USE STRICTLY PROHIBITED

*

II. Bluetooth

____\8897\MFG-W8897-MF-WIFI-BT-FM-BR... 🗕 🗖 🗙 C:\Documents and Settings\Marvell\Desktop\D

W87xx (BT) TEST MENU

Enter option: ?

MARVELL CONFIDENTIAL - UNAUTHORIZED DISTRIBUTION OR USE STRICTLY PROHIBITED

U87xx (BT) TEST MENU

11	:	Get BT Channel
12	=	Set BT Channel
15	=	Get Power Level Value
16	=	Set Power Level Value
21	=	Step Power Level
31	=	Marvell Rx Result Report
32	=	Marvell Rx Test
62	=	Read BTU Reg
63	=	Write BTU Reg
64	=	Read BRF Reg
65	=	Write BRF Reg
68	=	Peek SOC Mem
69	=	Poke SOC Mem
78	=	Enable Device Under Test Mode
80	=	Reset BT HW
88	=	FW/HW Version
89	=	Load Dut configuration file.
99	=	Exit
100	=	Set Pcm Loop Back Mode
113	=	Get Power Control Class
114	=	Set Power Control Class
115	=	Get Disable Btu Pwr Ctl
116	=	Set Disable Btu Pwr Ctl
121	=	Read LE Mem
122	=	Write LE Mem
123	-	Read LE Radio Register
124	=	Write LE Radio Register
125	-	LE Tx_Test
126	-	Get_LE_Tx Test Packet count
127	-	LE Rx_Test
128	-	Get LE Rx Test Packet Error
129	=	LE Test_End
130	-	Write LE Tx Power
225	=	Dutycycle Ix
234	=	Reload Bt CalData
Enter	۱	nntion:

87xx (BT) TEST MENU

-----11 : Get BT Channel

Ex. "11"

"11" returns the channel in use.

12 : Set BT Channel

To place the device on a specific channel, perform the listed command below in Labtool.

Ex. "12 7" //Channels 0-78 are available

The "7" specifies the desired channel for testing.

15 : Get Power Level Value

Returns Power Level Value in 0.5dB steps. Example: "15"

16 : Set Power Level Value

(pwr) (IsEDR=0)

Power Level in 0.5dB steps IsEDR: Flag to spcify Data Rate. 0(BDR) 1(EDR) Example: "**16 2.5 0**"

21 : Step Power Level

(step)

MARVELL CONFIDENTIAL - UNAUTHORIZED DISTRIBUTION OR USE STRICTLY PROHIBITED

Step Power Level in 0.5dB steps step: Step Value, (double). Example: "**21 -2.5**"

31 : Rx RSSI Test

Ex. **"31" "31"** returns the following fields.

PER	0 %
BER2	0 %

http://www.marvell.com

32 : Rx RSSI Test (Used with CMD 31) Enter "80" for Reset Example Use Case for HW setup(Litepoint): Connect the system to the Litepoint Environment SW setup: -Open IQ Signal 1.4.0.t -Tools -> VSG -File -> Open Generator File -> select file -> 3-DH5...000088c0ffee.mod -Make sure Rf Bt channel is set to 10 -Signal Level at -60dBm 1) Enter 32 10 10 -1 35 2 00-00-88-c0-ff-ee 10 - channel 10 - packets -1 = payloadlength 35 = packetType 2 = PayLoadPattern 00-...ee= BD-Address 2) Send Packets from Litepoint (in this case 10) 3) Enter "31" in Labtools Receive Packets 4) Repeat test for 100, 1000, and 10000 packets. 62 : Read BTU Reg CMD "62" enables the user to read back the specified BTU Reg Ex. "62 800001b8" will read back SPI location 0x800001b8 63 : Write BTU Reg CMD "63" enables the user to write to the specified BTU Reg. Ex. "63 Ob8 11" will write 0x11to the BTU 0x0b8 64 : Read BRF Reg CMD "64" enables the user to read back the specified BRF Reg. Ex. "64 1b8" will read back BRF register 0x1b8 65 : Write BRF Reg

CMD "65" enables the user to write to the specified BRF Reg.

Ex.

MARVELL CONFIDENTIAL - UNAUTHORIZED DISTRIBUTION OR USE STRICTLY PROHIBITED

"65 Ob8 11" will write 0x11 to the BRF 0x0b8 register

http://www.marvell.com

68 : Peek SOC Mem

CMD **"68**" enables the user to read back the specified location in the SOC mem. Ex.

"68 800001b8" will read back SOC mem location 0x800001b8

69 : Poke SOC Mem

CMD **"69"** enables the user to write to the specified SOC mem location. Ex.

"69 800001b8 1111" will write 0x1111 to SOC register 0x800001b8

78 : Enable Device Under Test Mode

"78 1" enables the device under Test Mode.

80 : Reset BT RF Block

"80" resets the BT RF Block

88 : FW/HW Version

"88" returns the Firmware and Hardware Version.

89 : Load Dut configuration file

99 : Exit

MARVELL CONFIDENTIAL - UNAUTHORIZED DISTRIBUTION OR USE STRICTLY PROHIBITED

"99" exits the labtool.

100 : PCM Loopback Test

Connect PCM_DIN to function generator and PCM_DOUT to Scope Function Generator configuration is frequency 4kHz, 3.3Vpp, Square Waveform "100 1" enables the PCM Loopback Test.

113 : Get Power Control Class

mode: 0:MRVL_Class2, 1:MRVL_Class1.5

114 : Set Power Control Class

(mode)

mode: 0:MRVL_Class2, 1:MRVL_Class1.5. Default=0. Example: "114 0" sets the Mode to Class2 only

115 : Get Disable Btu Pwr Ctl

116 : Set Disable Btu Pwr Ctl

(mode)

mode : 0=enable, 1=disable. Default=0.

- 121 : Read LE Mem
- 122 : Write LE Mem

123 : Read LE Radio Register

http://www.marvell.com

124 : Write LE Radio Register

125/126/129/130 : BT LE Tx Test Example Procedure:

1) Enter "130 x" x = Power Range from -30 to 20 dBm

2) Set the parameters in the CBT(BT Tester) to follow the same settings as CMD 125 below for Frequency, Length and Pattern.

3) Enter "125 39 37 2"
(FreqIndex=0) (Len=37) (pattern=0)
FreqIndex: Frequency Index, range 0 - 39,matching with Frequency 2402 - 2480 MHz
Len: Payload data length (Range: 0 - 37)
pattern: Payload data pattern.
0: PN9, 1: 0xF0, 2: 0xAA, 3: PN15, 4: all 1, 5: all 0, 6: 0x0F, 7: 0x55.

4) Check Tx Results on CBT

- 5) Enter "129" to stop Tx test
- 6) Enter "126" to review Tx packets count

127/128/129 : BT LE Rx Test

MARVELL CONFIDENTIAL - UNAUTHORIZED DISTRIBUTION OR USE STRICTLY PROHIBITED

Example Procedure:

1) Enter "127 39".

This will start the BT LE Rx tests on channel 39.. LE Rx Test (FreqIndex=0x0) FreqIndex: Freq Index, range 0 - 39, matching with Frequency 2402 - 2480MHz

2) Configure CBT to send x number of packets.

3) Enter "129" to Rx packets Cmd 129 will stop the Rx test and return total Rxed Packets count

4) Enter "128"

CMD128 checks Rx Test Error Report

225 : Dutycycle Tx

Enter CMD "80" Enter 12 78 – 78=channel

http://www.marvell.com

1) Enter "225 1" 2) Read meter Meter shows fluctuating signal 3) Enter 225 Repeat test for other combination: "225 p0 p1 p2 p3 p4" p0 – Enable: 0=off; 1=on p1 – PacketType (Rate.Slot): Testing pattern and ACL: DM1=0x01; DM3=0x03; DM5=0x05 (GFSK, 1M FEC) DH1=0x11; DH3=0x13; DH5=0x15 (GFSK, 1M) 2-DH1=0x21; 2-DH2=0x23; 2-DH5=0x25; (DQPSK, 2M)3-DH1=0x31; 3-DH2=0x33; 3-DH5=0x35; (8PSK, 3M) Sco: HV1=0x11; HV2=0x12; HV3=0x13; (GFSK, 1M) eSco: EV3=0x13; EV4=0x14; EV5=0x15; (GFSK, 1M); 2-EV3=0x23; 2-EV5=0x25 (DQPSK,2M); 3-EV3=0x33; 3-EV5=0x35 (8PSK, 3M) p2 - PayloadPattern: 0: all 0, 1: all 1, 2: PN9, 3: 0xAA, 4: 0xF0 5: PRBS ACL, 6: PRBS SCO, 7: PRBS ESCO p3 – PayloadLenInByte: PacketType dependent, -1 for max possible p4 – Hopmode: Hopemode (on=1, random hopping, off=0 fixed channel) 234 : Reload Bt CalData

Test Procedure:

1. Make Sure "WlanCalData_ext.conf" is in the Labtool Application Directory Configure SetUp.ini file -

- 2. Set "No EEPROM = 1"
- 3. Enter 54

Generate 2 cal data files

- 4. Remove "_Upload" from cal data files
- 5. Launch Labtool
- 6. Enter BT Labtool
- 7. Enter 80
- 8. Enter 116 1
- 9. Enter 114 1
- 10. Enter 16 4 0

Set Power to 4dBm at BDR rate

11. Enter 12 39

Set BT channel

- 12. Enter 225 1 11
- Measure for BDR 13. Measure with LP tester; BT VSA

http://www.marvell.com

Confidential

5w1zvm99-hp3hshwi * Marvell Semiconductor Inc * UNDER NDA# 12104823

Check "Avg. Power (no gap)" field for power measurement. Ideally power offset should be +/-1.5dB from target power. Remember the measurement.

14. Enter 225

- Disable Tx
- 15. Modify "FELoss" flag in CalBtDataFile.txt and save

Remember the Default, 1 code change is 0.5dB step. E.g if default is 0x0 and you want 1dB increments; you changed it to 0x2.

- 16. Rename existing "WlanCalData_ext.conf" from Step 1
- 17. Enter 53

A new "WlanCalData_ext.conf" file will be generated

- 18. Compare *.conf from Step1/16 with *.conf from Step17 See FELoss value updated
- 19. Power Recycle DUT <optional step>
- 20. Enter BT Labtool
- 21. Enter 234

Reload BT CalData

22. Repeat Step 7-14

Output power changes according to FELoss setting

<u>NFC</u>

MARVELL CONFIDENTIAL - UNAUTHORIZED DISTRIBUTION OR USE STRICTLY PROHIBITED

To be updated in next revision of the Application Note.

AN12101

http://www.marvell.com

Advanced Information

This document provides advanced information about the products described. All specifications described herein are based on design goals only. Do not use for final design. Visit the Marvell® web site at www.marvell.com or call 1-866-674-7253 for the latest information on Marvell products.

Disclaimer

No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of Marvell. Marvell retains the right to make changes to this document at any time, without notice. Marvell makes no warranty of any kind, expressed or implied, with regard to any information contained in this document, including, but not limited to, the implied warranties of merchantability or fitness for any particular purpose. Further, Marvell does not warrant the accuracy or completeness of the contained in this document, including, but not limited to, the implied warranties of merchantability or fitness for any particular purpose. Further, Marvell does not warrant the accuracy or completeness of the information, text, graphics, or other items contained within this document. Marvell makes no commitment either to update or to keep current the information contained in this document. Marvell makes no commitment either to update or to keep current the information contained in this document. Marvell moducs are alfe-threatening situation if any such products failed. Do not use Marvell products in these types of equipment or applications. The user should contact Marvell notes that would cause a life-threatening situation if any such products failed. Do not use Marvell products in the stypes of equipment or applications. The user should contact Marvell to obtain the latest specifications before finalizing a product design. Marvell assumes no responsibility, either for use of these products may include one or more optional functions. The user should contact Marvell product and point functions. Should the user choose to implement any of these optional functions, it is possible that the use could be subject to third party intellectual property rights. Marvell recommends that the user investigate whether third party intellectual property rights are relevant to the intended use of these products and obtain licenses as appropriate under relevant intellectual property rights. Marvell Technology Group Ltd. (MTGL) and its subsidiaries, including Marvell Semiconductor, Inc. (MSI), Marvell Asia Pte Ltd. (MAL), Marvell Japan K.K., Marvell Taiwan Ltd., Marvell Neurol. All rights reserved. Marvell Ltd. (MSIL), and Marvell Semiconductor Germany GmbH.

respective owners. Marvell

5488 Marvell Lane Santa Clara, CA 95054 Phone: (408) 222 2500 Sales Fax: (408) 752 9029 Email commsales@marvell.com

MARVELL CONFIDENTIAL - UNAUTHORIZED DISTRIBUTION OR USE STRICTLY PROHIBITED

http://www.marvell.com